skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roy, Supratik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Orogenic ophiolites are a hallmark of Phanerozoic plate tectonics, containing igneous lithologies that provide constraints on fundamental tectono-magmatic processes. The c. 1900Ma Pembine Ophiolite (Wisconsin, USA) is associated with the Penokean Orogen and represents a rare example of a proposed Paleoproterozoic ophiolite. The Penokean Orogen shares broad characteristics with Phanerozoic (<541 Ma) orogens, but the origin of the Pembine Ophiolite remains unclear, with the mafic volcanic rocks interpreted as representing either an intra-oceanic arc or continental back arc setting. To test these hypotheses, we present the results of petrography, bulk-rock geochemistry and mineral chemistry for a suite of 34 Pembine rocks, as well as U-Pb zircon geochronology for two samples. Based on trace elements established as immobile in the studied rocks, we demonstrate that mafic volcanism progressed (up-stratigraphic-section) from mid-ocean ridge-like to boninitic. The chemical evolution is identical to that observed in < 250 Ma ophiolites in the Himalayan–Alpine Orogen, which record forearc spreading during the nascent stages of subduction in the Tethys Ocean. We interpret the Pembine Ophiolite as forearc lithosphere formed during subduction initiation and obducted to the margin of the Superior Craton during the Penokean Orogeny. The processes responsible for forming (and preserving) this example of a Paleoproterozoic ophiolite may not have been dissimilar to those operating on the Phanerozoic Earth. 
    more » « less
  2. The Dadeville Complex of Alabama and Georgia (southeastern United States) represents the largest suite of exposed mafic-ultramafic rocks in the southern Appalachians. Due to poor preservation, chemical alteration, and tectonic reworking, a specific tectonic origin for the Dadeville Complex has been difficult to deduce. We obtained new whole-rock and mineral geochemistry coupled with zircon U-Pb geochronology to investigate the magmatic and metamorphic processes recorded by the Dadeville Complex, as well as the timing of these processes. Our data reveal an up-stratigraphic evolution in the geochemistry of the volcanic rocks, from forearc basalts to boninites. Our new U-Pb zircon crystallization data—obtained from three amphibolite samples—place the timing of forearc/protoarc volcanism no later than ca. 467 Ma. New thermobarometry suggests that the Dadeville Complex rocks subsequently experienced deep, high-grade metamorphism, at pressure-temperature conditions of ~7 kbar and ~760 °C. The data presented here support a model for formation of the Dadeville Complex in the forearc region of a subduction zone during subduction initiation and protoarc development, followed by deep burial/underthrusting of the complex during orogenesis. 
    more » « less